MATH 53, QUIZ 2: STEWART 10.4-12.3

Be sure to show neat, organized, complete work in the space provided.

- 1. Find the two **unit vectors** in \mathbb{R}^2 satisfying the stated conditions.
 - (a) Parallel to the line y = 3x + 2

Slope is 3. So a parallel vector is given by
$$\langle 1,3 \rangle$$
.

Normalize: $\frac{1}{\sqrt{1^2+3^2}}\langle 1,3 \rangle = \frac{1}{\sqrt{10}}\langle 1,3 \rangle$.

The other answer is the regutive of this.

Answers: $\frac{1}{\sqrt{10}}\langle 1,3\rangle$ and $\frac{1}{\sqrt{10}}\langle 1,3\rangle$

(b) Perpendicular to the line x + y = 1

$$1x + 1y = 1$$

so (1,1) is perpendicular to the line.

Normalize by dividing by its magnitude, which is JZ.

Answers: $\sqrt{\frac{1}{5}}(1,1)$ and $\sqrt{\frac{1}{5}}(1,1)$

- 2. Consider the polar curve $r = 4 \sin(\theta)$.
 - (a) Sketch a picture in the *xy*-plane of this polar curve for $0 \le \theta \le \pi$.

circle of radius 2 centered @ (0,2)

(b) Calculate the exact length of the portion of the curve with $\pi/3 \le \theta \le \pi/2$. Whether you use calculus or some other method is up to you.

Arclength formula: $\int_{\pi/3}^{\pi/2} \int |b \sin^2 \theta + |b \cos^2 \theta| d\theta$ $= 4 \int_{\pi/2}^{\pi/2} d\theta = 4 \cdot \frac{\pi}{6} = \boxed{\frac{2\pi}{3}}$

- OR - use picture to right to see it is & of the whole circle, which has circumference 4TT.

So again, 4TT/6.

Final answer: $\frac{2\pi}{3}$

Feedback: If you have any feedback you'd like to share, please write it here. If there are any specific topics you are confused about, feel free to write them here as well.