MATH 53, QUIZ 2: STEWART 10.4-12.3

Be sure to show neat, organized, complete work in the space provided.

1. Find the two unit vectors in \mathbb{R}^{2} satisfying the stated conditions.
(a) Parallel to the line $y=3 x+2$

$$
\begin{aligned}
& \text { Slope is } 3 \text {. So a parallel vector is given by }\langle 1,3\rangle \text {. } \\
& \text { Normalize: } \frac{1}{\sqrt{1^{2}+3^{2}}}\langle 1,3\rangle=\frac{1}{\sqrt{10}}\langle 1,3\rangle . \\
& \text { The other answer is the negative of this. }
\end{aligned}
$$

Answers: $\frac{1}{\sqrt{10}}\langle 1,3\rangle \quad$ and $\frac{-1}{\sqrt{10}}\langle 1,3\rangle$
(b) Perpendicular to the line $x+y=1$

$$
\begin{aligned}
& \quad 1 x+1 y=1 \\
& \text { so }\langle 1,1\rangle \text { is perpendicular to the line. } \\
& \text { Normalize by dividing by its magnitude, which } 15 \sqrt{2} \text {. }
\end{aligned}
$$

Answers: $\frac{1}{\sqrt{2}}\langle 1,1\rangle$ and $\frac{-1}{\sqrt{2}}\langle 1,1\rangle$
2. Consider the polar curve $r=4 \sin (\theta)$.
(a) Sketch a picture in the $x y$-plane of this polar curve for $0 \leq \theta \leq \pi$.

circle of raclins 2 centered @ $(0,2)$
(b) Calculate the exact length of the portion of the curve with $\pi / 3 \leq \theta \leq \pi / 2$. Whether you use calculus or some other method is up to you.

Arclength formula:

$$
\begin{aligned}
& \int_{\pi / 3}^{\pi / 2} \sqrt{16 \sin ^{2} \theta+16 \cos ^{2} \theta} d \theta \\
= & 4 \int_{\pi / 3}^{\pi / 2} d \theta=4 \cdot \frac{\pi}{6}=\frac{2 \pi}{3}
\end{aligned}
$$

$-O R$ - use picture to right to see it is $\frac{1}{6}$ of the whole circle, which has circumference 4π.
So again, $4 \pi / 6$.

Final answer: \qquad
Feedback: If you have any feedback you'd like to share, please write it here. If there are any specific topics you are confused about, feel free to write them here as well.

